Splitting and matrix exponential approach for jump-diffusion models with Inverse Normal Gaussian, Hyperbolic and Meixner jumps
نویسنده
چکیده
This paper is a further extension of the method proposed in Itkin (2014) as applied to another set of jump-diffusion models: Inverse Normal Gaussian, Hyperbolic and Meixner. To solve the corresponding PIDEs we accomplish few steps. First, a second-order operator splitting on financial processes (diffusion and jumps) is applied to these PIDEs. To solve the diffusion equation we use standard finite-difference methods. For the jump part, we transform the jump integral into a pseudo-differential operator and construct its second order approximation on a grid which supersets the grid used for the diffusion part. The proposed schemes are unconditionally stable in time and preserve positivity of the solution which is computed either via a matrix exponential, or via its Páde approximation. Various numerical experiments are provided to justify these results.
منابع مشابه
Asymptotic Analysis of Stock Price Densities and Implied Volatilities in Mixed Stochastic Models
In this paper, we obtain sharp asymptotic formulas with error estimates for the Mellin convolution of functions defined on (0,∞) and use these formulas to characterize the asymptotic behavior of marginal distribution densities of stock price processes in mixed stochastic models. Special examples of mixed models are jump-diffusion models and stochastic volatility models with jumps. We apply our ...
متن کاملAlmost sure exponential stability of stochastic reaction diffusion systems with Markovian jump
The stochastic reaction diffusion systems may suffer sudden shocks, in order to explain this phenomena, we use Markovian jumps to model stochastic reaction diffusion systems. In this paper, we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps. Under some reasonable conditions, we show that the trivial solution of stocha...
متن کاملFast Exponential Time Integration for Pricing Options in Stochastic Volatility Jump Diffusion Models
The stochastic volatility jump diffusion model with jumps in both return and volatility leads to a two-dimensional partial integro-differential equation (PIDE). We exploit a fast exponential time integration scheme to solve this PIDE. After spatial discretization and temporal integration, the solution of the PIDE can be formulated as the action of an exponential of a block Toeplitz matrix on a ...
متن کاملPricing of Futures Contracts by Considering Stochastic Exponential Jump Domain of Spot Price
Derivatives are alternative financial instruments which extend traders opportunities to achieve some financial goals. They are risk management instruments that are related to a data in the future, and also they react to uncertain prices. Study on pricing futures can provide useful tools to understand the stochastic behavior of prices to manage the risk of price volatility. Thus, this study eval...
متن کاملOption Pricing on Commodity Prices Using Jump Diffusion Models
In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Algorithmic Finance
دوره 3 شماره
صفحات -
تاریخ انتشار 2014